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Abstract. In this paper, we introduce four new types of the system of generalized vector
quasi-equilibrium problems with set-valued maps which include system of vector quasi-
equilibrium problems, system of vector equilibrium problems, system of variational inequal-
ity problems, and vector equilibrium problems in the literature as special cases. We prove
the existence of solutions for such kinds of system of generalized vector quasi-equilibrium
problems. Consequently, we derive some existence results of a solution for the system of
vector quasi-equilibrium problems and the generalized Debreu type equilibrium problem for
vector-valued functions.
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1. Introduction and Formulations

In the recent years, the equilibrium problems with vector-valued func-
tions and set-valued maps have been studied in [1–8] and the references
therein. Very recently, Hou et al. [9] introduced a class of generalized vec-
tor quasi-equilibrium problems which includes the models in [1–8] and the
vector quasi-equilibrium problems in [10–13] as special cases. They estab-
lished some existence results of a solution for the generalized vector quasi-
equilibrium problems. The system of vector quasi-equilibrium problems,
i.e., a family of quasi-equilibrium problems for vector-valued bifunctions
defined on a product set, was introduced by Ansari et al. [14] with appli-
cations in Debreu type equilibrium problem for vector-valued functions.
As generalizations of the above models, we introduce some new types of
system of generalized vector quasi-equilibrium problems, i.e., a family of
quasi-equilibrium problems for set-valued maps defined on a product set.
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Throughout this paper, for a set A in a topological space, we denote
by coA, intA, coA the convex hull, interior, and the convex closure of A,
respectively.

Let I be an index set. For each i ∈ I , let Zi , Ei and Fi be topologi-
cal vector spaces. Consider two family of nonempty convex subsets {Xi}i∈I

with Xi ⊆Ei and {Yi}i∈I with Yi ⊆Fi . Let

E =
∏

i∈I

Ei, X =
∏

i∈I

Xi, F =
∏

i∈I

Fi and Y =
∏

i∈I

Yi

An element of the set Xi =∏
j∈I\i Xi will be denoted by xi , therefore, x ∈

X will be written as x = (xi, xi)∈Xi ×Xi . Similarly, an element of the set
Y will be denoted by y = (yi, yi)∈Y i ×Yi . For each i ∈ I , let Ci : X → 2Zi ,
Di :X→2Xi and Ti :X→2Yi be set-valued maps with nonempty values, and
let �i :X ×Y ×Xi →2Zi be a set-valued map.
The following classes of system of generalized vector quasi-equilibrium
problems with set-valued maps are of interest to us:

(I) Weak type I system of generalized vector quasi-equilibrium problems
(in short, WI-SGVQEP): Find (x̄, ȳ) = (x̄i, x̄i , ȳ

i , ȳi) in X × Y such
that for each i ∈ I ,

x̄i ∈Di(x̄) and ȳi ∈Ti(x̄) : �i(x̄, ȳ, zi)⊆Zi\(−intCi(x̄)),

∀zi ∈Di(x̄).

(II) Weak type II system of generalized vector quasi-equilibrium problems
(in short, WII-SGVQEP): Find (x̄, ȳ) = (x̄i, x̄i , ȳ

i , ȳi) in X × Y such
that for each i ∈ I ,

x̄i ∈Di(x̄) and ȳi ∈Ti(x̄) : �i(x̄, ȳ, zi) �⊆−intCi(x̄), ∀zi ∈Di(x̄).

(III) Strong type I system of generalized vector quasi-equilibrium prob-
lems (in short, SI-SGVQEP): Find (x̄, ȳ) = (x̄i, x̄i , ȳ

i , ȳi) in X × Y

such that for each i ∈ I ,

x̄i ∈Di(x̄) and ȳi ∈Ti(x̄) : �i(x̄, ȳ, zi)⊆Ci(x̄), ∀zi ∈Di(x̄).

(IV) Strong type II system of generalized vector quasi-equilibrium prob-
lems (in short, SII-SGVQEP): Find (x̄, ȳ) = (x̄i, x̄i , ȳ

i , ȳi) in X × Y

such that for each i ∈ I ,

x̄i ∈Di(x̄) and ȳi ∈Ti(x̄) : �i(x̄, ȳ, zi)∩Ci(x̄) �=∅, ∀zi ∈Di(x̄).
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Remark 1.1. In Problems (I) and (II), it is assumed that intCi(x) �=∅ for
each i ∈ I and for all x ∈X.

PROPOSITION 1.1. (1) Assume that ∀i ∈ I and ∀x ∈ X, the set Ci(x) is
nonempty, then (x̄, ȳ)∈X ×Y solves (SI-SGVQEP) implies (x̄, ȳ) solves (SII-
SGVQEP);

(2) Assume that ∀i ∈ I and ∀x ∈X, the set Ci(x) is a proper closed convex
cone with apex at the origin with intCi(x) �=∅. Then the following statements
hold:

(a) (x̄, ȳ) ∈ X ×Y solves (WI-SGVQEP) implies (x̄, ȳ) solves (WII-
SGVQEP);

(b) (x̄, ȳ) ∈ X ×Y solves (SI-SGVQEP) implies (x̄, ȳ) solves (WI-
SGVQEP);

(c) (x̄, ȳ) ∈ X ×Y solves (SII-SGVQEP) implies (x̄, ȳ) solves (WII-
SGVQEP).

It is worth noting that the above four kinds of system of generalized vector
quasi-equilibrium problems encompass almost all of the system of vector
quasi-equilibrium problems, system of vector equilibrium problems, system
of vector variational inequality problems and vector equilibrium problems in
the literature. See the examples below.

(a) If the index set I is singleton, then Problems I–IV reduce to find
(x̄, ȳ) in X ×Y such that x̄ ∈D(x̄), ȳ ∈T (x̄), and for all z∈D(x̄),

�(x̄, ȳ, z)⊆Z\(−intC(x̄)), �(x̄, ȳ, z) �⊆ (−intC(x̄)),

�(x̄, ȳ, z)⊆C(x̄) or �(x̄, ȳ, z)∩C(x̄) �=∅,

respectively. These generalized vector quasi-equilibrium problems were intro-
duced and studied by Hou et al. [9].

(b) If the set-valued map �i is replaced by a single-valued function
fi : X × Y × Xi → Zi for each i ∈ I , then both the (WI-SGVQEP) and the
(WII-SGVQEP) reduce to the weak type system of vector quasi-equilibrium
problems (in Short, W-SVQEP), which is to find (x̄, ȳ) = (x̄i, x̄i , ȳ

i , ȳi) in
X ×Y such that for each i ∈ I ,

x̄i ∈Di(x̄) and ȳi ∈Ti(x̄) : fi(x̄, ȳ, zi) /∈−intCi(x̄), ∀zi ∈Di(x̄).

Both the (SI-SGVQEP) and the (SII-SGVQEP) reduce to the strong type
system of vector quasi-equilibrium problems (in Short, S-SVQEP), which is
to find (x̄, ȳ)= (x̄i, x̄i , ȳ

i , ȳi) in X ×Y such that for each i ∈ I ,

x̄i ∈Di(x̄) and ȳi ∈Ti(x̄) : fi(x̄, ȳ, zi)∈Ci(x̄), ∀zi ∈Di(x̄).



142 JIAN-WEN PENG ET AL.

For each i ∈ I , let φi : X × Y → Zi be a vector-valued function. And
we define a trifunction fi : X × Y × Xi → Zi as fi(x, y, ui) = φi(x

i, y, ui) −
φi(x, y), ∀(x, y, ui) ∈ X ×Y ×Xi . Then the (W-SVQEP) reduces to the
generalized Debreu type equilibrium problem for vector-valued functions
(in short, G-Debreu VEP), which is to find (x̄, ȳ)= (x̄i, x̄i , ȳ

i , ȳi) in X ×Y

such that for each i ∈ I ,

x̄i ∈Di(x̄) and ȳi ∈Ti(x̄) :φi(x̄
i, ȳ, zi)−φi(x̄, ȳ) /∈−intCi(x̄),

∀ zi ∈Di(x̄).

We denote by R and R+ the set of real numbers and the set of real non-
negative numbers, respectively. For each i ∈ I , if Zi = R and Ci(x) = R+

for all x ∈X, then both the (W-SVQEP) and the (S-SVQEP) reduce to the
system of quasi-equilibrium problems (in short, SQEP), which is to find
(x̄, ȳ)= (x̄i, x̄i , ȳ

i , ȳi) in X ×Y such that for each i ∈ I ,

x̄i ∈Di(x̄) and ȳi ∈Ti(x̄) : fi(x̄, ȳ, zi)�0,∀zi ∈Di(x̄).

Let Y ={ȳ} and for each i ∈ I , Ti(x)={ȳi} for all x ∈X, let ϕi :X×Xi →Zi

and hi :X×Y →Zi , respectively, be defined as ϕi(x, zi)=fi(x, ȳ, zi), ∀(x, zi)∈
X ×Xi and hi(x)=φi(x, ȳ),∀x ∈X, then the (W-SVQEP) and the (G-Debreu
VEP), respectively, reduce to the system of vector quasi-equilibrium prob-
lems and the (Debreu VEP) introduced by Ansari et al. [14]. And the (SQEP)
reduces to the mathematical model in [15, p. 286] and [16, pp. 152–153].

(c) Let Y ={ȳ}. For each i ∈ I and for all x ∈X, let Ti(x)={ȳi}. Let Fi :
X×Xi →2Zi be defined as Fi(x, zi)=�i(x, ȳ, zi), then the (WII-SGVQEP)
reduces to find x̄ in X such that for each i ∈ I ,

x̄i ∈Di(x̄) :Fi(x̄, zi) �⊆−intCi(x̄), ∀zi ∈Di(x̄).

This was researched by Ansari and Khan [17] and contains as special
cases the system of vector equilibrium problems with set-valued maps in
[18], the system of vector equilibrium problems in [19], and the system of
variational inequalities in [20–24].

The rest of this paper is arranged in the following manner. The next sec-
tion deals with some preliminary definitions, notations and results which
will be used in the sequel. In Section 3, we establish existence results for a
solution to the (WI-SGVQEP), the (WII-SGVQEP), the (SI-SGVQEP) and
the (SII-SGVQEP) with or without involving �-condensing maps by using
the same techniques in [14]. Consequently, we derive some existence results
of a solution for the weak type system of vector quasi-equilibrium prob-
lems. In Section 4, as applications of the results of Section 3, we derive
some existence results of a solution for the (G-Debreu VEP).
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2. Preliminaries

In order to prove the main results, we need the following definitions.

DEFINITION 2.1. For each i ∈ I , let Ci :X →2Zi and � :X ×Xi →2Zi be
set-valued maps, ϕ :X ×Xi →Zi a vector-valued function. Then

(i) � is called to be weak type I Ci−x-0-partially diagonally quasicon-
vex (WIC-PDQC, in short) in the second argument if, for any finite
set ∧i ={zi1, zi2, . . . , zin}⊆Xi , and for all x ∈X with xi ∈ co∧i , there
exists j ∈{1,2, . . . , n} such that �(x, zij )⊆Zi\(−intCi(x)).

(ii) � is called to be weak type II Ci−x-0-partially diagonally quasicon-
vex (WIIC-PDQC, in short) in the second argument if, for any finite
set ∧i ={zi1, zi2, . . . , zin}⊆Xi , and for all x ∈X with xi ∈ co∧i , there
exists j ∈{1,2, . . . , n} such that �(x, zij ) �⊆−intCi(x).

(iii) � is called to be strong type I Ci−x-0-partially diagonally quasicon-
vex (SIC-PDQC, in short) in the second argument if, for any finite
set ∧i ={zi1, zi2, . . . , zin}⊆Xi , and for all x ∈X with xi ∈ co∧i , there
exists j ∈{1,2, . . . , n} such that �(x, zij )⊆Ci(x).

(iv) � is called to be strong type II Ci−x-0-partially diagonally quasi-
convex (SIIC-PDQC, in short) in the second argument if, for any
finite set ∧i ={zi1, zi2, . . . , zin}⊆Xi , and for all x ∈X with xi ∈ co∧i ,
there exists j ∈{1,2, . . . , n} such that �(x, zij )∩Ci(x) �=∅.

(v) ϕ is called to be weak type Ci−x-0-partially diagonally quasicon-
vex (WC-PDQC, in short) in the second argument if, for any finite
set ∧i ={zi1, zi2, . . . , zin}⊆Xi , and for all x ∈X with xi ∈ co∧i , there
exists j ∈{1,2, . . . , n} such that ϕ(x, zij ) /∈−intCi(x).

(vi) ϕ is called to be strong type Ci−x-0-partially diagonally quasicon-
vex (SC-PDQC, in short) in the second argument if, for any finite
set ∧i ={zi1, zi2, . . . , zin}⊆Xi , and for all x ∈X with xi ∈ co∧i , there
exists j ∈{1,2, . . . , n} such that ϕ(x, zij )∈Ci(x).

Remark 2.1. It is assumed that intCi(x) �=∅ for each i ∈ I and for all x ∈
X in cases (i), (ii) and (v), and that Ci(x) �=∅ for each i ∈I and for all x ∈X

in cases (iii), (iv) and (vi).

Remark 2.2. If the index set I is a singleton, then the (I), (II), (III) and
(IV) in Definition 2.1, respectively, reduce to the weak type I C-diagonal
quasiconvexity, the weak type II C-diagonal quasiconvexity, the strong type
I C-diagonal quasiconvexity, the strong type II C-diagonal quasiconvexity
of � ( see Definition 2.3 in [9] and Definition 1 in [8]).
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Remark 2.3. For each i ∈ I , if Zi =R and Ci(x)=R+ for all x ∈X, then
both the weak type Ci−x-0-partially diagonal quasiconvexity and the strong
type Ci−x-0-partially diagonal quasiconvexity of ϕi reduce to the 0-partially
diagonal quasiconvexity (i.e., [25, Definition 3]), which in turn reduces to
the γ -diagonal quasiconvexity in [26] if I ={1}, here γ =0.

PROPOSITION 2.1. (1) Assume that ∀i ∈ I and ∀x ∈ X, the set Ci(x) is
nonempty, then SIC-PDQC implies SIIC-PDQC;

(2) Assume that ∀i ∈ I and ∀x ∈X, the set Ci(x) is a proper closed convex
cone with apex at the origin with intCi(x) �=∅. Then,

(a) SIC-PDQC implies WIC-PDQC;
(b) WIC-PDQC implies WIIC-PDQC;
(c) SIIC-PDQC implies WIIC-PDQC;
(d) SC-PDQC implies WC-PDQC.

DEFINITION 2.2. [14, 27]. Let M be a nonempty convex subset of a
topological vector space E and Z a real topological space with a closed
and convex cone P with apex at the origin. A vector-valued function ϕ :
M →Z is called

(i) P -quasifunction iff, for all z∈Z, the set {x ∈M :ϕ(x)∈ z−P } is con-
vex.

(ii) natural P -quasifunction iff, ∀x, y ∈M, and λ∈ [0,1], ϕ(λx + (1−λ)y)∈
co{ϕ(x), ϕ(y)}−P .

DEFINITION 2.3. [3]. Let C : X → 2Z be a set-valued map with nonemp-
ty values. Then the set-valued map � : X × X → 2Z is called to be C(x)-
quasiconvex-like if, for all x ∈X, y1, y2 ∈X, and α ∈ [0,1], we have either

�(x,αy1 + (1−α)y2)⊆�(x, y1)−C(x)

or

�(x,αy1 + (1−α)y2)⊆�(x, y2)−C(x).

The following example shows that there exists a set-valued map � : X ×
Xi →2Zi which is (SIC-PDQC) in the second argument. By proposition 2.1,
we know that � is also (SIIC-PDQC), (WIC-PDQC) and (WIIC-PDQC) in
the second argument. However, � may not be Ci(x)-quasiconvex-like.

EXAMPLE 2.1. Let I be any finite index set. For each i ∈ I , let Ei be a
real normed space with dual space Ei

∗, Xi ⊂ Ei , Zi = R, Ci : X → 2Zi be
defined as Ci(x)=Ci =R+,∀x ∈X. Let ‖•‖i denote the norm on Ei . If we
define a norm on E as follows
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‖x‖=
n∑

i=1

‖xi‖i , ∀x = (x1, x2, . . . , xn)∈E,

then it is easy to verify that ‖•‖ is a norm on E. And hence E is also a
real normed space. Let [e1, e2] denote the line segment joining e1 and e2.
Choose pi ∈Ei

∗, we define a set-valued map � :X ×Xi →2Zi as

�(x, zi)={〈u, zi −xi〉 :u∈ [‖x‖‖zi‖ipi,2‖x‖‖zi‖ipi ]}, ∀(x, zi)∈X ×Xi,

Then, � is (SIC-PDQC) in the second argument. Otherwise, there exists
finite set ∧i ={zi1, zi2, . . . , zin}⊆Xi , and there is x ∈X with xi =

∑n
j=1 αjzij

(αj � 0,
∑n

j=1 αj = 1 ) such that for all j = 1,2, . . . , n, �(x, zij ) �⊆ Ci(x).
Then for each j , there exists λ̄j ∈ [0,1] such that

〈λ̄j‖x‖‖zij ‖ipi + (1− λ̄j )2‖x‖‖zij ‖ipi, zij −xi〉<0,

It follows that

〈pi, zij −xi〉<0, j =1,2, . . . , n.

Then we have

0>

n∑

j=1

αj 〈pi, zij −xi〉=〈pi, xi −xi〉=0,

a contradiction. So �(x, yi) is (SIC-PDQC) in zi .
However, �(x, zi) is not Ci(x)-quasiconvex-like. In fact, choose x̂ ∈ E

such that 〈pi, x̂i〉>0, set zi1 = 1
2 x̂i , zi2 =− 1

2 x̂i . Then we have

�(x̂, zi1)=
{
α‖x̂‖‖x̂i‖i〈pi, x̂i〉 :−1

2
�α �−1

4

}
⊆−intCi(x̂).

�(x̂, zi2)=
{
α‖x̂‖‖x̂i‖i〈pi, x̂i〉 :−3

2
�α �−3

4

}
⊆−intCi(x̂).

But for zi0 = 1
2(zi1 + zi2)=0, we have

�

(
x̂,

1
2
(zi1 + zi2)

)
=�(x̂, zi0)={0} �⊆�(x̂, zij )−Ci(x̂), j =1,2.

DEFINITION 2.4. [28]. Let X and Y be two topological spaces, T :X→2Y

be a set-valued map. Then T is said to be upper semicontinuous if the set
{x ∈ X : T (x) ⊆ V } is open in X for every open subset V of Y . T is said
to be lower semicontinuous if the set {x ∈ X : T (x) ∩ V } is open in X for
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every open subset V of Y . T is said to have open lower sections if the set
T −1(y)={x ∈X :y ∈T (x)} is open in X for each y ∈Y .

DEFINITION 2.5. [29]. Let E be a Hausdorff topological space and L a
lattice with least element, denoted by 0. A map �: 2E →L is a measure of
noncompactness provided that the following conditions hold ∀M,N ∈2E:

(i) �(M)=0 iff M is precompact ( i.e., it is relatively compact).
(ii) �(coM)=�(M).

(iii) �(M ∪N)=max{�(M),�(N)}.

DEFINITION 2.6. [29]. Let � : 2E → L be a measure of noncompactness
on E and X⊆E. A set-valued map T :X→2E is called �-condensing pro-
vided that, if M ⊆X with �(T (M))��(M), then M is relatively compact.

Remark 2.4. Note that every set-valued map defined on a compact set is
�-condensing for any measure of noncompactness �. If E is locally convex
and T :X→2E is a compact set-valued map (i.e., T (X) is precompact), then
T is �-condensing for any measure of noncompactness �. It is clear that
if T :X→2E is �-condensing and T ∗ :X→2E satisfies T ∗(x)⊆T (x) ∀x ∈X,
then T ∗ is also �-condensing.

We shall use the following particular forms of two maximal element the-
orems for a family of set-valued maps due to Deguire et al. [30, Theorem 7]
and Chebbi and Florenzano [31, Corollary 4].

LEMMA 2.1. [14,18,30]. Let {Xi}i∈I be a family of nonempty convex sub-
sets where each Xi is contained in a Hausdorff topological vector space Ei .
For each i ∈ I , let Si :X →2Xi be a set-valued map such that

(i) for each i ∈ I , Si(x) is convex,
(ii) for each x ∈X, xi /∈Si(x),

(iii) for each yi ∈Xi , Si
−1(yi) is open in X.

(iv) there exist a nonempty compact subset N of X and a nonempty com-
pact convex subset Bi of Xi for each i ∈ I such that for each x ∈X \N

there exists i ∈ I satisfying Si(x)∩Bi �=∅. Then there exists x̄ ∈X such
that Si(x̄)=∅ for all i ∈ I .

LEMMA 2.2. [14, 31] Let I be any index set and {Xi}i∈I be a family
of nonempty, closed and convex subsets where each Xi is contained in a
locally convex Hausdorff topological vector space Ei . For each i ∈ I , let
Si :X→2Xi be a set-valued map. Assume that the set-valued map S :X→2X

defined as S(x) = ∏
i∈I Si(x), ∀x ∈ X, is �-condensing and the conditions
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(i) – (iii) of Lemma 2.1 hold. Then there exists x̄ ∈ X such that Si(x̄) = ∅
for all i ∈ I .

3. Existence Results

Some existence results of a solution for the four types of system of gen-
eralized vector quasi-equilibrium problems without �-condensing maps are
firstly shown.

THEOREM 3.1. Let I be any index set. For each i ∈ I , let Zi be a topo-
logical vector space, Ei and Fi be two Hausdorff topological vector spaces,
Xi ⊆ Ei and Yi ⊆ Fi be nonempty and convex subsets, let Di : X → 2Xi and
Ti :X →2Yi be set-valued maps with nonempty convex values and open lower
sections, and the set Wi ={(x, y)∈X ×Y :xi ∈Di(x) and yi ∈Ti(x)} be closed
in X ×Y . For each i ∈ I , assume that

(i) Ci :X→2Zi is a set-valued map such that intCi(x) �=∅ for each x ∈X;
(ii) �i :X ×Y ×Xi →2Zi is a set-valued map satisfies:

(a) ∀ zi ∈Xi , the set {(x, y)∈X ×Y :�i(x, y, zi)⊆−intCi(x)} is open;
(b) For each y ∈Y , �i(x, y, zi) is weak type II Ci−x-0-partially diag-

onally quasiconvex in the third argument;
(c) there exist nonempty and compact subsets N ⊆ X and K ⊆ Y

and nonempty, compact and convex subsets Bi ⊆Xi , Ai ⊆Yi for
each i ∈ I such that ∀(x, y)= (xi, xi, y)∈X ×Y\N ×K∃i ∈ I and
∃ūi ∈Bi , v̄i ∈Ai satisfying ūi ∈Di(x), v̄i ∈Ti(x) and �i(x, y, ūi)⊆
−intCi(x).

Then, there exists (x̄, ȳ)= (x̄i, x̄i , ȳ
i , ȳi) in X ×Y such that for each i ∈ I ,

x̄i ∈Di(x̄) and ȳi ∈Ti(x̄) : �i(x̄, ȳ, zi) �⊆−intCi(x̄), ∀zi ∈Di(x̄).

That is, the solution set of the (WII-SGVQEP) is nonempty.
Proof. For each i ∈ I , let us define a set-valued map Pi :X×Y →2Xi by

Pi(x, y)={zi ∈Xi :�i(x, y, zi)⊆−intCi(x)}, ∀ (x, y)∈X ×Y .

We show first that, for each i ∈ I and for all (x, y)= (xi, xi, y)∈X ×Y ,

xi /∈ coPi(x, y),. (1)

or else, there would exist i ∈ I and (x̄, ȳ)∈X ×Y such that x̄i ∈co(Pi(x̄, ȳ)).
That is, there exist a finite subset {zi1, zi2, . . . , zin}⊆Pi(x̄, ȳ) such that

x̄i ∈ co{zi1, zi2, . . . , zin}.
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Therefore, we have �i(x̄, ȳ, zij )⊆−intCi(x̄), j =1,2, . . . , n, which contradicts
hypothesis (b) of (ii). Therefore, (1) holds.

By condition (a) of (ii), ∀i ∈ I , ∀ zi ∈Xi , the set

Pi
−1(zi)={(x, y)∈X ×Y :�i(x, y, zi)⊆−intCi(x)}

is open in Xi . That is, Pi has open lower sections on X × Y . And by
Lemma 2 in [32], we know that coPi :X×Y →2Xi also has open lower sec-
tions. For each i ∈ I , we also define another set-valued map Si : X × Y →
2Xi×Yi by

Si(x, y)=
{

[Di(x)∩ coPi(x, y)]×Ti(x) if (x, y)∈Wi,

Di(x)×Ti(x) if (x, y) /∈Wi.

Then, it is clear that ∀i ∈ I and ∀(x, y) ∈ X ×Y , Si(x, y) is convex, and
(xi, yi) /∈Si(x, y). Since ∀i ∈ I and ∀(ui, vi)∈Xi ×Yi ,

Si
−1(ui, vi)=

[
coP −1(ui)∩ (Di

−1(ui)×Y )∩ (Ti
−1(vi)×Y )

]

∪
[
(X ×Y \Wi)∩ (Di

−1(ui)×Y )∩ (Ti
−1(vi)×Y )

]
.

and Di
−1(ui)×Y , Ti

−1(vi)×Y , coPi
−1(ui) and X×Y \Wi are open in X×Y ,

we have Si
−1(ui, vi) is open in X ×Y .

From condition (iv), there exist a nonempty and compact subset N ×
K ⊆ X ×Y and a nonempty, compact and convex subset Bi × Ai ⊆ Xi ×Yi

for each i ∈ I such that ∀(x, y) = (xi, xi, y) ∈ X ×Y\N ×K∃i ∈ I and
∃(ūi, v̄i) ∈ Si(x, y)∩ (Bi ×Ai). Hence, by Lemma 2.1, ∃(x̄, ȳ) ∈ X ×Y such
that Si(x̄, ȳ) = ∅,∀i ∈ I . Since ∀i ∈ I and ∀(x, y) ∈ X ×X, Di(x) and Ti(y)

are nonempty, we have (x̄, ȳ) ∈ Wi and Di(x̄) ∩ coPi(x̄, ȳ) = ∅, ∀i ∈ I . This
implies (x̄, ȳ)∈Wi and Di(x̄)∩Pi(x̄, ȳ)=∅, ∀i ∈ I . Therefore, ∀i ∈ I ,

x̄i ∈Di(x̄), ȳi ∈Ti(x̄) and �i(x̄, ȳ, zi) �⊆−intCi(x̄), ∀zi ∈Di(x̄).

That is, the solution set of the (WII-SGVQEP) is nonempty.

Remark 3.1. The condition (b) of (ii) in Theorem 3.1 can be replaced by
the following conditions.

(b1) For each (x, y) ∈ X ×Y , the set Pi(x, y) = {zi ∈ Xi : �i(x, y, zi)

⊆−intCi(x)} is a convex set;
(b2) For all x = (xi, xi)∈X, for all y ∈Y , �i(x, y, xi) �⊆−intCi(x).

In fact, If the condition (b) of (ii) in Theorem 3.1 is not satisfied,
then there exist i ∈ I , y ∈ Y , a finite subset {zi1, zi2, . . . , zin} in Xi , and
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a point x = (xi, xi) ∈ X with xi ∈ co{zi1, zi2, . . . , zin} such that for each
j = 1,2, . . . , n, �i(x, y, zij ) ⊆ −intCi(x), i.e., zij ∈ Pi(x, y). Since Pi(x, y) =
{zi ∈ Xi : �i(x, y, zi) ⊆ −intCi(x)} is a convex set, xi ∈ Pi(x, y), i.e.,
�i(x, y, xi)⊆−intCi(x), which contradicts to the condition (b2).

Remark 3.2. The condition (b) of (ii) in Theorem 3.1 can be replaced by
the following conditions.

(b1) For each y ∈Y , �i(x, y, zi) is Ci(x)-convex-like;
(b2) For all x = (xi, xi)∈X, for all y ∈Y , �i(x, y, xi) �⊆−intCi(x).

In fact, for each i ∈ I , let Pi be same as in Remark 3.1. Then by (b1),
for each i ∈ I and for each (x, y) ∈ X ×Y , the set Pi(x, y) is a convex set
(see for example the proof of Theorem 2.1 in [3]).

Remark 3.3. Let Y = {ȳ}. For each i ∈ I and for all x ∈ X, let
Di(x) = Xi , Ti(x) = {ȳi}. Let Fi : X × Xi → 2Zi be defined as Fi(x, zi) =
�i(x, ȳ, zi),∀(x, zi)∈X ×Yi . And let the condition (b) of (ii) in Theorem 3.1
be replaced by the conditions (b1) and (b2) in Remark 3.1 or Remark 3.2,
then by Theorem 3.1, we recover Theorems 2 and 3 in [18]. By Example 2.1,
we know that Theorem 3.1 extends and generalizes Theorems 2 and 3 in [18]
in several ways.

THEOREM 3.2. Assume that all the hypotheses of Theorem 3.1 are satis-
fied, except that the condition (ii) is replaced by

(ii)∗�i :X ×Y ×Xi →2Zi satisfies:

(a) ∀ zi ∈Xi , the set {(x, y)∈X ×Y :�i(x, y, zi)∩−intCi(x) �=∅} is open;
(b) For each y ∈ Y , �i(x, y, zi) is weak type I Ci−x-0-partially diagonally

quasiconvex in the third argument;
(c) there exist nonempty and compact subsets N ⊆X and K ⊆Y and non-

empty, compact and convex subsets Bi ⊆Xi , Ai ⊆Yi for each i ∈ I such
that ∀(x, y)= (xi, xi, y)∈X ×Y\N ×K ∃i ∈ I and ∃ūi ∈Bi , v̄i ∈Ai sat-
isfying ūi ∈Di(x), v̄i ∈Ti(x) and �i(x, y, ūi)∩−intCi(x) �=∅.

Then, there exists (x̄, ȳ)= (x̄i, x̄i , ȳ
i , ȳi) in X ×Y such that for each i ∈ I ,

x̄i ∈Di(x̄) and ȳi ∈Ti(x̄) : �i(x̄, ȳ, zi)⊆Zi\(−intCi(x̄)), ∀zi ∈Di(x̄).

That is, the solution set of the (WI-SGVQEP) is nonempty.
Proof. We proceed as in the proof of Theorem 3.1. But we need to

modify the set-valued map Pi :X ×Y →2Xi (∀i ∈ I ) to be

Pi(x, y)={zi ∈Xi :�i(x, y, zi)∩−intCi(x) �=∅}, ∀ (x, y)∈X ×Y .
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Then, it is easy to show that xi /∈ co(Pi(x, y)) for each i ∈ I and for all
(x, y)= (xi, xi, y)∈X ×Y due to the condition (b) of (ii)∗. The rest of the
proof is similar to that of Theorem 3.1. This completes the proof of the
theorem.

THEOREM 3.3. Assume that all the hypotheses of Theorem 3.1 are satis-
fied, except that the condition (ii) is replaced by

(ii)∗�i :X ×Y ×Xi →2Zi satisfies:

(a) ∀ zi ∈Xi , the set {(x, y)∈X ×Y :�i(x, y, zi) �⊆Ci(x)} is open.
(b) For each y ∈Y , �i(x, y, zi) is strong type I Ci−x-0-partially diagonally

quasiconvex in the third argument;
(c) there exist nonempty and compact subsets N ⊆X and K ⊆Y and non-

empty, compact and convex subsets Bi ⊆Xi , Ai ⊆Yi for each i ∈ I such
that ∀(x, y)= (xi, xi, y)∈X ×Y\N ×K∃i ∈ I and ∃ūi ∈Bi , v̄i ∈Ai satis-
fying ūi ∈Di(x), v̄i ∈Ti(x) and �i(x, y, ūi) �⊆Ci(x).

Then, there exists (x̄, ȳ)= (x̄i, x̄i , ȳ
i , ȳi) in X ×Y such that for each i ∈ I ,

x̄i ∈Di(x̄) and ȳi ∈Ti(x̄) :�i(x̄, ȳ, zi)⊆Ci(x̄), ∀zi ∈Di(x̄).

That is, the solution set of the (SI-SGVQEP) is nonempty.

THEOREM 3.4. Assume that all the hypotheses of Theorem 3.1 are satis-
fied, except that the condition (ii) is replaced by

(ii)∗�i :X ×Y ×Xi →2Zi satisfies:

(a) ∀ zi ∈Xi , the set {(x, y)∈X ×Y :�i(x, y, zi)∩Ci(x)=∅} is open;
(b) For each y ∈Y , �i(x, y, zi) is strong type II Ci−x-0-partially diagonally

quasiconvex in the third argument;
(c) there exist nonempty and compact subsets N ⊆X and K ⊆Y and non-

empty, compact and convex subsets Bi ⊆Xi , Ai ⊆Yi for each i ∈ I such
that ∀(x, y)= (xi, xi, y)∈X ×Y\N ×K ∃i ∈ I and ∃ūi ∈Bi , v̄i ∈Ai sat-
isfying ūi ∈Di(x), v̄i ∈Ti(x) and �i(x, y, ūi)∩Ci(x)=∅.

Then, there exists (x̄, ȳ)= (x̄i, x̄i , ȳ
i , ȳi) in X ×Y such that for each i ∈ I ,

x̄i ∈Di(x̄) and ȳi ∈Ti(x̄) : �i(x̄, ȳ, zi)∩Ci(x̄) �=∅, ∀zi ∈Di(x̄).

That is, the solution set of the (S-II-SGVQEP) is nonempty.

The proof of Theorem 3.3 as well as that of Theorem 3.4 are similar to
that of Theorem 3.1 or Theorem 3.2; therefore, they are omitted.

Remark 3.4. The condition (a) of (ii) in Theorem 3.1 is satisfied if the
following conditions hold ∀i ∈ I :
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(1) Mi =Zi\(−intCi) :X →2Zi is upper semicontinuous;
(2) For all zi ∈Xi , (x, y) �→�i(x, y, zi) is upper semicontinuous on X ×Y

with compact values.

In fact, we can prove that Qi(zi)={(x, y)∈X ×Y : �i(x, y, zi) �⊆−intCi(x)}
is closed for all zi ∈Xi . Consider a net (xt , yt )∈Qi(zi) such that (xt , yt )→
(x, y)∈X ×Y . Since (xt , yt )∈Qi(zi), there exists ut ∈�i(xt , yt , zi) such that
ut /∈ −intCi(xt ). From the upper semicontinuity and compact values of �i

on X ×Y and Proposition 1 in [33], it suffices to find a subset {utj } which
converges to some u∈�i(x, y, zi), where utj ∈�i(xtj , ytj , zi). Since (xtj , utj )→
(x, u), by Proposition 7 in [34, p. 110] and the upper semicontinuity of Mi ,
it follows that u /∈−intCi(x), and hence (x, y)∈Qi(zi), Qi(zi) is closed.

Remark 3.5. The condition (a) of (ii)∗ in Theorem 3.2 is satisfied if the
following hold ∀i ∈ I :

(1) Mi =Zi\(−intCi) :X →2Zi is upper semicontinuous;
(2) For all zi ∈Xi , (x, y) �→�i(x, y, zi) is lower semicontinuous on X ×Y .

In fact, we can prove that Qi(zi) = {(x, y) ∈ X ×Y : �i(x, y, zi) ⊆ Zi\
(−intCi(x))} is closed for all zi ∈ Xi . Consider a net (xt , yt ) ∈ Qi(zi) such
that (xt , yt )→(x, y)∈X ×Y . Then for each t , �i(xt , yt , zi)⊆Zi\(−intCi(xt )).
Since (x, y) �→ �i(x, y, zi) is lower semicontinuous on X × Y , by (v) of
Lemma 2 in [12], for any w ∈ �i(x, y, zi), there exists a net wt such that
wt ∈ �i(xt , yt , zi) and wt converges to w. By Proposition 7 in [34, p. 110]
and the upper semicontinuity of Mi , it follows that w /∈ −intCi(x). And
hence (x, y)∈Qi(zi) and Qi(zi) is closed.

Remark 3.6. The condition (a) of (ii)∗ in Theorem 3.3 is satisfied if the
following hold ∀i ∈ I :

(1) Ci:X→2Zi is upper semicontinuous set-valued map with closed values;
(2) For all zi ∈Xi , (x, y) �→�i(x, y, zi) is lower semicontinuous on X ×Y .

Remark 3.7. The condition (a) of (ii)∗ in Theorem 3.4 is satisfied if the
following conditions hold ∀i ∈ I :

(1) Ci : X → 2Zi is upper semicontinuous set-valued map with closed
values;

(2) For all zi ∈Xi , (x, y) �→�i(x, y, zi) is upper semicontinuous on X ×Y

with compact values.

Then, an existence result of a solution for the (WII-SGVQEP) with �-
condensing maps is also presented as follows.



152 JIAN-WEN PENG ET AL.

THEOREM 3.5. Let I be any index set. For each i ∈ I , let Zi be a topo-
logical vector space, Ei and Fi be two locally convex Hausdorff topological
vector spaces, Xi ⊆Ei and Yi ⊆Fi be nonempty, closed and convex subsets, let
Di :X →2Xi and Ti :X →2Yi be set-valued maps with nonempty convex values
and open lower sections, the set Wi ={(x, y)∈X ×Y :xi ∈Di(x) and yi ∈Ti(x)}
be closed in X ×Y . And let the set-valued map D ×T = (∏

i∈I Di ×
∏

i∈I Ti

)
:

X × X → 2X×Y defined as (D × T )(x, y) = ∏
i∈I Di(x) × ∏

i∈I Ti(y), ∀(x, y) ∈
X ×X be �-condensing. Assume that the conditions (i) and (ii) of Theorem 3.1
hold. Then, the solution set of the (WII-SGVQEP) is nonempty.

Proof. In view of Lemma 2.2 and the proof of Theorem 3.1, it is suffi-
cient to show that the set-valued map S :X×Y →2X×Y defined as S(x, y)=∏

i∈I Si(x, y),∀(x, y)∈X ×Y , is �-condensing, where Si ’s are the same as in
the proof of Theorem 3.1. By the definition of Si , Si(x, y)⊆Di(x)×Ti(x)

for all (x, y)∈X ×Y and for each i ∈ I , and therefore S(x, y)⊆D(x)×T (x)

for all (x, y)∈X ×Y . Since D×T is �-condensing, by Remark 2.4, we have
S is also �-condensing.

Remark 3.8. By similar argument with that of Theorem 3.5, we can eas-
ily obtain the existence results of a solution for the (WI-SGVQEP), the
(SI-SGVQEP) and the (SII-SGVQEP) with �-condensing maps, and they
are omitted.

Remark 3.9. Let Y ={ȳ}. For each i ∈ I , let Ti(x)={ȳi}, ∀x ∈X, and Fi :
X ×Xi → 2Zi be defined as Fi(x, zi)=�i(x, ȳ, zi), ∀x ∈X,∀zi ∈Xi . Let the
condition (b) of (ii) in Theorems 3.1 and 3.5 be replaced by the conditions
(b1) and (b2) in Remark 3.1, then we recover Theorems 3.1 and 3.2 in [17].
Therefore, Theorems 3.1 and 3.5 extend and generalize the main results in
[17] in several ways.

Let �i be replaced by a vector-valued function fi , by Theorems 3.1 and
3.5, respectively, we have the following two existence results of a solution
for the W-SVQEP.

COROLLARY 3.1. Let I be any index set. For each i ∈ I , let Zi be a topo-
logical vector space, Ei and Fi be two Hausdorff topological vector spaces,
Xi ⊆ Ei and Yi ⊆ Fi be nonempty and convex subsets, let Di : X → 2Xi and
Ti :X →2Yi be set-valued maps with nonempty convex values and open lower
sections, and the set Wi = {(x, y) ∈ X ×Y : xi ∈ Di(x) and yi ∈ Ti(x)} be
closed in X ×Y . For each i ∈ I , assume that

(i) Ci : X → 2Zi is a set-valued map such that intCi(x) �= ∅ for each x ∈X

and the set-valued map Mi = Zi\(−intCi) : X → 2Zi is upper semicon-
tinuous;
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(ii) the function fi :X ×Y ×Xi →Zi satisfies:

(a) For all zi ∈Xi , the map (x, y) �→fi(x, y, zi) is continuous on X ×
Y ;

(b) For each y ∈ Y , fi(x, y, zi) is weak type Ci−x-0-partially diago-
nally quasiconvex in the third argument;

(iii) there exist nonempty and compact subsets N ⊆X and K ⊆Y and non-
empty, compact and convex subsets Bi ⊆Xi , Ai ⊆Yi for each i ∈ I such
that ∀(x, y)= (xi, xi, y)∈X ×Y\N ×K∃i ∈ I and ∃ūi ∈Bi , v̄i ∈Ai sat-
isfying ūi ∈Di(x), v̄i ∈Ti(x) and fi(x, y, ūi)∈−intCi(x).

Then, there exists (x̄, ȳ)= (x̄i, x̄i , ȳ
i , ȳi) in X ×Y such that for each i ∈ I ,

x̄i ∈Di(x̄) and ȳi ∈Ti(x̄) : fi(x̄, ȳ, zi) /∈−intCi(x̄), ∀zi ∈Di(x̄).

That is, the solution set of the (W-SVQEP) is nonempty.

COROLLARY 3.2. Let I be any index set. For each i ∈ I , let Zi be a topo-
logical vector space, Ei and Fi be two locally convex Hausdorff topological
vector spaces, Xi ⊆Ei and Yi ⊆Fi be nonempty, closed and convex subsets, let
Di : X → 2Xi and Ti : X → 2Yi be set-valued maps with nonempty convex val-
ues and open lower sections, the set Wi ={(x, y)∈X ×Y : xi ∈Di(x) and yi ∈
Ti(x)} be closed in X ×Y and fi : X ×Y ×Xi →Zi be a vector-valued func-
tion. Assume that the set-valued map D ×T = (∏

i∈I Di ×
∏

i∈I Ti

)
:X ×X →

2X×Y defined as (D ×T )(x, y)=∏
i∈I Di(x)×∏

i∈I Ti(y), ∀(x, y)∈X ×X, is
�-condensing and for each i ∈ I , the conditions (i) and (ii) of Corollary 3.2
hold. Then the solution set of the (W-SVQEP) is nonempty.

Remark 3.10. (1) Let Ci(x) be a proper closed and convex cone with
apex at the origin and intCi(x) �= ∅ for each i ∈ I and for all x ∈ X and
Pi = ∩x∈XCi(x) for each i ∈ I . If ∀i ∈ I , ∀x ∈ X,ϕi(x, xi) /∈ −intCi(x) and
zi →ϕi(x, zi) is natural Pi-quasifunction, then ϕi(x, zi) is weak type Ci−x-0-
partially diagonally quasiconvex in the second argument. And the converse
is not true in general. In Example 2.1, if we replace the set-valued map � by
a vector-valued function ϕi :X ×Xi →Zi defined as

ϕi(x, zi)=〈‖x‖‖zi‖ipi, zi −xi〉, ∀(x, zi)∈X ×Xi,

Then, it is easy to verify that ϕi(x, zi) is weak type Ci−x-0-partially
diagonally quasiconvex in the second argument. However, ϕi(x, zi) is not
natural Pi-quasifunction in zi for some x ∈ X. In fact, choose x̂ ∈ X such
that 〈pi, x̂i〉>0, set zi1 = 1

2 x̂i , zi2 =− 1
2 x̂i . Then
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ϕi(x̂, zi1)=−1
4
‖x̂‖‖x̂i‖i〈pi, x̂i〉∈−intPi.

ϕi(x̂, zi2)=−3
4
‖x̂‖‖x̂i‖i〈pi, x̂i〉∈−intPi.

But for zi0 = 1
2(zi1 + zi2)=0, we have

ϕi

(
x̂,

1
2
(zi1 + zi2)

)
=ϕi(x̂, zi0)=0 /∈ co(ϕi(x̂, zi1), ϕi(x̂, zi2))−Pi

Hence, ϕi(x̂, zi) is not natural Pi-quasifunction in zi .
Let Y ={ȳ}. For each i ∈ I , let Ti(x)={ȳi}, ∀x ∈X, and ϕi : X ×Xi →Zi

be defined as ϕi(x, zi)=fi(x, ȳ, zi), ∀(x, zi)∈X ×Xi . Then, by Corollary 3.1
and Corollary 3.2, respectively, we can obtain two new results which gen-
eralize Theorem 2 and Theorem 3 in [14] with more general convexity.

(2) For all x ∈ X, let Ci(x) = Ci be a proper, closed and convex cone
with apex at the origin and intCi �= ∅ for each i ∈ I . If ∀i ∈ I and ∀x ∈
X,ϕi(x, xi) /∈−intCi and zi →ϕi(x, zi) is Ci-quasifunction, then ϕi(x, zi) is
weak type Ci-0-partially diagonally quasiconvex. And the converse is not
true in general. In fact, it is easy to verify that ϕi in (1) is weak type
Ci-0-partially diagonally quasiconvex but not Ci-quasifunction in the sec-
ond argument. Let Y = {ȳ}. For each i ∈ I , for all x ∈ X, let Ti(x) = {ȳi}
and Di(x) = Xi , let ϕi : X × Xi → Zi be defined as ϕi(x, zi) = fi(x, ȳ, zi),
∀(x, zi)∈X ×Xi . Then, by Corollary 3.1, we can obtain a new results which
generalize Theorem 2.2 of [19] with more general convexity.

(3) Theorems 3.1–3.5, Corollaries 3.1 and 3.2 extend and generalize The-
orems 2 and 3 in [14] and Theorems 2.1 and 2.2 in [19] in several ways.

Remark 3.11. By Theorems 3.1–3.5, it is easy to get the existence results
of solutions for other special cases of the four types of system of general-
ized vector equilibrium problems. And they are omitted here.

4. Applications

In this section, we present some existence of a solution for the (G-Debreu
VEP).

THEOREM 4.1. Let I be any index set. For each i ∈ I , let Zi be a topo-
logical vector space, Ei and Fi be two Hausdorff topological vector spaces,
Xi ⊆ Ei and Yi ⊆ Fi be nonempty and convex subsets, let Ci : X → 2Zi be a
set-valued map such that Ci(x) is a proper, closed and convex cone with apex
at the origin and intCi(x) �= ∅ for each x ∈X, Di : X → 2Xi and Ti : X → 2Yi

be set-valued maps with nonempty convex values and open lower sections, the
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set Wi ={(x, y)∈X ×Y : xi ∈Di(x) and yi ∈Ti(x)} be closed in X ×Y and
φi be a bifunction from X ×Y into Zi . For each i ∈ I , assume that

(i) Mi =Zi\(−intCi) :X →2Zi is upper semicontinuous;
(ii) For all xi ∈Xi and y ∈Y , zi �→φi(x

i, y, zi) is natural Pi-quasifunction,
where Pi =∩x∈XCi(x);

(iii) φi is continuous on X ×Y ;
(iv) there exist nonempty and compact subsets N ⊆X and K ⊆Y and non-

empty, compact and convex subsets Bi ⊆Xi , Ai ⊆Yi for each i ∈ I such
that ∀(x, y)= (xi, xi, y)∈X ×Y\N ×K∃i ∈ I and ∃ūi ∈Bi , v̄i ∈Ai satis-
fying ūi ∈Di(x), v̄i ∈Ti(x) and φi(x

i, y, ūi)−φi(x, y)∈−intCi(x).

Then, there exists (x̄, ȳ)= (x̄i, x̄i , ȳ
i , ȳi) in X ×Y such that for each i ∈ I ,

x̄i ∈Di(x̄) and ȳi ∈Ti(x̄) :φi(x̄
i, ȳ, zi)−φi(x̄, ȳ) /∈−intCi(x̄),∀zi ∈Di(x̄).

That is, the solution set of the (G-Debreu VEP) is nonempty.
Proof. For each i ∈ I , we define a trifunction fi : X ×Y ×Xi and a set-

valued map Qi :X ×Y →2Zi as

fi(x, y, ui)=φi(x
i, y, ui)−φi(x, y), ∀(x, y, ui)∈X ×Y ×Xi.

Qi(x, y)={ui ∈Xi :fi(x, y, ui)∈−intCi(x)}, ∀(x, y)∈X ×Y .

Then ∀i ∈ I , ∀(x, y)∈X ×Y , Qi(x, y) is convex.
To prove it, let us fix arbitrary i ∈ I and (x, y) ∈ X ×Y . Let ui1, ui2 ∈

Qi(x, y) and λ∈ [0,1], then we have

fi(x, y, uij )∈−intCi(x), for j =1,2. (2)

Since φi(x
i, y, .) is natural Pi quasifunction, by Remark 2 in [14], ∃α∈ [0,1]

such that

φi(x
i, y, λui1 + (1−λ)ui2)∈αφi(x

i, y, ui1)+ (1−α)φi(x
i, y, ui2)−Pi.

And hence

fi(x, y, λui1 + (1−λ)ui2)∈αfi(x, y, ui1)+ (1−α)fi(x, y, ui2)−Pi. (3)

From (2) and (3), we get

fi(x, y, λui1 + (1−λ)ui2)∈−intCi(x)− intCi(x)−Pi ⊆−intCi(x).

Hence, λui1 + (1 − λ)ui2 ∈ Qi(x, y) and therefore Qi(x, y) is convex. Then
we prove that for all y ∈Y , fi(x, y, ui) is weak type Ci−x-0-partially diag-
onally quasiconvex in the third argument. Otherwise, there is a point y in
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Y , a finite subset {ui1, ui2, . . . , uin} in Xi and a point x = (xi, xi) in X with
xi∈co{ui1, ui2, . . . , uin} such that fi(x, y, uij )∈−intCi(x) for all j=1,2, . . ., n.
By the convexity of Qi(x, y), we have xi ∈ Qi(x, y), that is, fi(x, y, xi) =
ϕi(x

i, y, xi)−ϕi(x, y)=0∈−intCi(x), which is absurd. Hence, for each i ∈I ,
for all y ∈Y , fi(x, y, ui) is weak type Ci−x-0-partially diagonally quasicon-
vex in the third argument. It is easy to verify that the other conditions of
Corollary 3.1 are satisfied. By Corollary 3.1, we know that the conclusion
holds.

By Corollary 3.2 and Lemma 2.2, we get

THEOREM 4.2. Let I be any index set. For each i ∈ I , let Zi be a topo-
logical vector space, Ei and Fi be two locally convex Hausdorff topological
vector spaces, Xi ⊆Ei and Yi ⊆Fi be nonempty, closed and convex subsets, let
Ci :X→2Zi be a set-valued map such that Ci(x) is a proper, closed and con-
vex cone with apex at the origin and intCi(x) �=∅ for each x ∈X, Di :X→2Xi

and Ti : X → 2Yi be set-valued maps with nonempty convex values and open
lower sections, the set Wi = {(x, y) ∈ X ×Y : xi ∈ Di(x) and yi ∈ Ti(x)} be
closed in X × Y and ϕi : X × Y → Zi be a vector-valued function. Assume
that the set-valued map D ×T = (

∏
i∈I Di ×

∏
i∈I Ti) : X ×X → 2X×Y defined

as (D ×T )(x, y)=∏
i∈I Di(x)×∏

i∈I Ti(y), ∀(x, y)∈X ×X, is �-condensing
and (i), (ii) and (iii) of Theorem 4.1 hold. Then, the solution set of the
(G-Debreu VEP) is nonempty.

Remark 4.1. Theorem 4.1 and Theorem 4.2 are new results even in scalar
cases. Theorem 4.1 and Theorem 4.2, respectively, generalize Theorem 5
and Theorem 6 in [14].
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